

MATHEMATICS

Chapter 8: Quadrilaterals

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com

Quadrilaterals

Quadrilateral

A **quadrilateral** is a closed figure obtained by joining four points (with no three points collinear) in an order.

Here, ABCD is a quadrilateral.

Parts of a quadrilateral

- A quadrilateral has four sides, four angles and four vertices.
- Two sides of a quadrilateral having no common end point are called its opposite sides.
- Two sides of a quadrilateral having a common end point are called its **adjacent sides**.
- Two angles of a quadrilateral having common arm are called its adjacent angles.
- Two angles of a quadrilateral not having a common arm are called its opposite angles.
- A diagonal is a line segment obtained on joining the opposite vertices.

Angle sum property of a quadrilateral

Sum of all the angles of a quadrilateral is 360°. This is known as the **angle sum property of a quadrilateral**.

Types of quadrilaterals and their properties:

Name of a quadrilateral	Properties		
Parallelogram: A quadrilateral with each	i. Opposite sides are equal.		
pair of opposite sides parallel.	ii. Opposite angles are equal.		
	iii. Diagonals bisect one another.		

08

Important facts about quadrilaterals

- If the non-parallel sides of trapezium are equal, it is known as isosceles trapezium.
- Square, rectangle and rhombus are all parallelograms.
- Kite and trapezium are not parallelograms.
- A square is a rectangle.
- A square is a rhombus.
- A parallelogram is a trapezium.

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (2)

A quadrilateral is a parallelogram if:

- i. each pair of opposite sides of a quadrilateral is equal, or
- ii. each pair of opposite angles is equal, or
- iii. the diagonals of a quadrilateral bisect other, or
- iv. each pair of opposite sides is equal and parallel.

Mid-Point Theorem

The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.

Converse of mid-point theorem

The line drawn through the mid-point of one side of a triangle, parallel to another side, bisects the third side.

Formation of a new quadrilateral using the given data

- If the diagonals of a parallelogram are equal, then it is a rectangle.
- If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
- If the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is asquare.

If there are three or more parallel lines and the intercepts made by them on a transversal are equal, then the corresponding intercepts on any other transversal are also equal.

Parallelogram: Opposite sides of a parallelogram are equal

In $\triangle ABC$ and $\triangle CDA$

AC = AC [Common / transversal]

 \angle BCA = \angle DAC [alternate angles]

 \angle BAC = \angle DCA [alternate angles]

 $\Delta ABC \cong \Delta CDA [ASA rule]$

Hence,

08

AB = DC and AD= BC [C.P.C.T.C]

Opposite angles in a parallelogram are equal

Properties of diagonal of a parallelogram

Diagonals of a parallelogram bisect each other.

Diagonal of a parallelogram divides it into two congruent triangles.

Jukey

Jukey Jukey

In $\triangle AOD$ and $\triangle COD$,

OA = OC [Diagonals of parallelogram bisect each other]

OD = OD [Common side]

AD = CD [Adjacent sides of a rhombus]

 $\Delta AOD \cong \Delta COD \text{ [SSS rule]}$

 $\angle AOD = \angle DOC [C.P.C.T]$

- $\angle AOD + \angle DOC = 180$ [: AOC is a straight line]
- Hence, $\angle AOD = \angle DOC = 90$

Hence proved.

Diagonals of a rectangle bisect each other and are equal

Fuxey Education

Rectangle ABCD

In \triangle ABC and \triangle BAD,

AB = BA [Common side]

BC = AD [Opposite sides of a rectangle]

 $\angle ABC = \angle BAD$ [Each = 900 :: ABCD is a Rectangle]

 $\triangle ABC \cong \triangle BAD$ [SAS rule]

08

Jukey Jutuno's Kou

Pation

 \therefore AC = BD [C.P.C.T]

08

Consider $\triangle OAD$ and $\triangle OCB$,

AD = CB [Opposite sides of a rectangle]

 $\angle OAD = \angle OCB$ [: AD||BC and transversal AC intersects them]

 $\angle ODA = \angle OBC [:: AD||BC and transversal BD intersects them]$

 $\Delta OAD \cong \Delta OCB$ [ASA rule]

::OA = OC [C.P.C.T]

Similarly, we can prove OB=OD

Diagonals of a square bisect each other at right angles and are equal

In $\triangle ABC$ and $\triangle BAD$,

AB = BA [Common side]

BC = AD [Opposite sides of a Square]

 $\angle ABC = \angle BAD$ [Each = 900 \because ABCD is a Square]

 $\Delta ABC \cong \Delta BAD \text{ [SAS rule]}$

 \therefore AC = BD [C.P.C.T]

Consider $\triangle OAD$ and $\triangle OCB$,

Zukeg Tuturo's Key

AD = CB [Opposite sides of a Square]

 $\angle OAD = \angle OCB$ [:: AD||BC and transversal AC intersects them]

 $\angle ODA = \angle OBC [:: AD||BC and transversal BD intersects them]$

 $\Delta OAD \cong \Delta OCB$ [ASA rule]

 \therefore OA = OC [C.P.C.T]

Similarly, we can prove OB=OD

In $\triangle OBA$ and $\triangle ODA$,

OB = OD [proved above]

BA = DA [Sides of a Square]

OA = OA [Common side]

 $\Delta OBA \cong \Delta ODA$, [SSS rule]

 $\therefore \angle AOB = \angle AOD [C.P.C.T]$

But ∠AOB + ∠AOD = 1800 [Linear pair]

 $\therefore \angle AOB = \angle AOD = 90^{\circ}$

Important results related to parallelograms

Opposite sides of a parallelogram are parallel and equal.

AB||CD, AD||BC, AB = CD, AD = BC

08

Opposite angles of a parallelogram are equal adjacent angels are supplementary.

 $\angle A = \angle C, \angle B = \angle D,$

08

 $\angle A + \angle B = 1800, \angle B + \angle C = 1800, \angle C + \angle D = 1800, \angle D + \angle A = 1800$

A diagonal of parallelogram divides it into two congruent triangles.

 $\triangle ABC \cong \triangle CDA$ [With respect to AC as diagonal]

 $\triangle ADB \cong \triangle CBD$ [With respect to BD as diagonal]

The diagonals of a parallelogram bisect each other.

AE = CE, BE = DE

- $\angle 1 = \angle 5$ (alternate interior angles)
- $\angle 2 = \angle 6$ (alternate interior angles)
- $\angle 3 = \angle 7$ (alternate interior angles)
- $\angle 4 = \angle 8$ (alternate interior angles)

 $\angle 9 = \angle 11$ (vertically opp. angles)

 $\angle 10 = \angle 12$ (vertically opp. angles)

The Mid-Point Theorem

The line segment joining the midpoints of two sides of a triangle is parallel to the third side and is half of the third side

In $\triangle ABC$, E – the midpoint of AB; F – the midpoint of AC

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (10)

Construction: Produce EF to D such that EF = DF.

In $\triangle AEF$ and $\triangle CDF$,

AF = CF [F is the midpoint of AC]

 $\angle AFE = \angle CFD [V.O.A]$

EF = DF [Construction]

 $\therefore \Delta AEF \cong \Delta CDF$ [SAS rule]

Hence,

08

 $\angle EAF = \angle DCF \dots (1)$

DC = EA = EB [E is the midpoint of AB]

DC || EA || AB [Since, (1), alternate interior angles]

DC || EB

So EBCD is a parallelogram

Therefore, BC = ED and BC || ED

Since ED = EF + FD = 2EF = BC [:: EF=FD]

We have, EF = 12 BC and EF||BC

Hence proved.

Juture's Key

Fukey Education

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (12)

Important Questions

Multiple Choice questions-

Question 1. A diagonal of a Rectangle is inclines to one side of the rectangle at an angle of 25°. The Acute Angle between the diagonals is:

- (a) 115°
- (b) 50°
- (c) 40°
- (d) 25°

Question 2. The diagonals of a rectangle PQRS intersects at O. If $\angle QOR = 44^\circ$, $\angle OPS = ?$

- (a) 82°
- (b) 52°
- (c) 68°
- (d) 75°

Question 3. If angles A, B, C and D of the quadrilateral ABCD, taken in order, are in the ratio 3:7:6:4, then ABCD is

- (a) Rhombus
- (b) Parallelogram
- (c) Trapezium
- (d) Kite

Question 4. All the angles of a convex quadrilateral are congruent. However, not all its sides are congruent. What type of quadrilateral is it?

cati

- (a) Parallelogram
- (b) Square
- (c) Rectangle
- (d) Trapezium

Question 5. In a Quadrilateral ABCD, AB = BC and CD = DA, then the quadrilateral is a

- (a) Triangle
- (b) Kite
- (c) Rhombus
- (d) Rectangle

Question 6. The angles of a quadrilateral are $(5x)^{\circ}$, $(3x + 10)^{\circ}$, $(6x - 20)^{\circ}$ and $(x - 20)^{\circ}$

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (13)

+ 25)°. Now, the measure of each angle of the quadrilateral will be

(a) 115°, 79°, 118°, 48°

- (b) 100° 79°, 118°, 63°
- (c) 110°, 84°, 106°, 60°
- (d) 75°, 89°, 128°, 68°

Question 7. The diagonals of rhombus are 12 cm and 16 cm. The length of the side of rhombus is:

- (a) 12cm
- (b) 16cm
- (c) 8cm
- (d) 10cm

Question 8. In quadrilateral PQRS, if $\angle P = 60^{\circ}$ and $\angle Q: \angle R : \angle S = 2 : 3 : 7$, then $\angle S =$

- (a) 175°
- (b) 210°
- (c) 150°
- (d) 135°

Question 9. In parallelogram ABCD, if $\angle A = 2x + 15^\circ$, $\angle B = 3x - 25^\circ$, then value of x is:

Future's Key

- (a) 91°
- (b) 89°
- (c) 34°
- (d) 38°

Question 10. If ABCD is a trapezium in which AB || CD and AD = BC, then:

- (a) ∠A = ∠B
- (b) $\angle A > \angle B$
- (c) ∠A < ∠B
- (d) None of the above

Very Short:

1. If one angle of a parallelogram is twice of its adjacent angle, find the angles of the parallelogram.

2. If the diagonals of a quadrilateral bisect each other at right angles, then name the

quadrilateral.

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (14)

3. Three angles of a quadrilateral are equal, and the fourth angle is equal to 1440. Find each of the equal angles of the quadrilateral.

4. If ABCD is a parallelogram, then what is the measure of $\angle A - \angle C$?

5. PQRS is a parallelogram, in which PQ = 12 cm and its perimeter is 40 cm. Find the length of each side of the parallelogram.

6. Two consecutive angles of a parallelogram are (x + 60)° and (2x + 30)°. What special name can you give to this parallelogram?

7. ONKA is a square with $\angle KON = 45^{\circ}$. Determine $\angle KOA$.

8. In quadrilateral PQRS, if $\angle P = 60^{\circ}$ and $\angle Q : \angle R : \angle S = 2 : 3 : 7$, then find the measure of $\angle S$.

Short Questions:

- 1. ABCD is a parallelogram in which $\angle ADC = 75^{\circ}$ and side AB is produced to point E as shown in the figure. Find x + y.
- 2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.
- 3. In the figure, ABCD is a rhombus, whose diagonals meet at O. Find the values of x and y.
- 4. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see fig.). Show that:

(i) $\triangle APB = \triangle CQD$

(ii) AP = CQ

- The diagonals of a quadrilateral ABCD are perpendicular to each other. Show that the quadrilateral formed by joining the mid-points of its sides is a rectangle.
 - AK B
- 6. In the fig., D, E and F are, respectively the mid-points of sides BC, CA and AB of an equilateral triangle ABC. Prove that DEF is also an equilateral triangle.
 B D C

Long Questions:

1. In the figure, P, Q and R are the mid-points of the sides BC, AC and AB of \triangle ABC. If BQ and PR intersect at X and CR and PQ intersect at Y, then show that $XY = \frac{1}{4}BC$

08

2. In the given figure, AE = DE and BC || AD. Prove that the points A, B, C and D are concyclic. Also, prove that the diagonals of the quadrilateral ABCD are equal.

3. In \triangle ABC, AB = 8cm, BC = 9 cm and AC = 10cm. X, Y and Z are mid-points of AO, BO and CO respectively as shown in the figure. Find the lengths of the sides of \triangle XYZ.

4. PQRS is a square and $\angle ABC = 90^{\circ}$ as shown in the figure. If AP = BQ = CR, then prove that $\angle BAC = 45^{\circ}$

5. ABCD is a parallelogram. If the bisectors DP and CP of angles D and C meet at P on side AB, then show that P is the mid-point of side AB.

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (16)

Assertion and Reason Questions-

1. In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

- a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- c) Assertion is correct statement but reason is wrong statement.
- d) Assertion is wrong statement but reason is correct statement.

Assertion: ABCD is a square. AC and BD intersect at O. The measure of +AOB = 90°.

Reason: Diagonals of a square bisect each other at right angles.

2. In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

- a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- c) Assertion is correct statement but reason is wrong statement.
- d) Assertion is wrong statement but reason is correct statement.

Assertion: The consecutive sides of a quadrilateral have one common point.

Reason: The opposite sides of a quadrilateral have two common point.

Case Study Questions-

1. Read the Source/ Text given below and answer these questions:

Sohan wants to show gratitude towards his teacher by giving her a card made by him. He has three pieces of trapezium pasted one above the other as shown in fig. These pieces are arranged in a way that AB || HC || GD || FE. Also BC =

Sobon wants to show gratitude towards his teacher by givin

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (17)

CD = DE and AH = HG = GF = 6cm. He wants to decorate the card by putting up a $\frac{1}{2}$

- i. Find the total length of colored tape required if DE = 4cm.
 - a. 20cm
 - b. 30cm
 - c. 40cm
 - d. 50cm
- ii. ABHC is a trapezium in which AB || HC and $\angle A = \angle B = 45\circ$. Find angles C and H of the trapezium.

Future's Key

- a. 135, 130
- b. 130, 135
- c. 135, 135
- d. 130, 130
- iii. What is the difference between trapezium and parallelogram?
 - a. Trapezium has 2 sides, and parallelogram has 4 sides.
 - b. Trapezium has 4 sides, and parallelogram has 2 sides.
 - c. Trapezium has 1 pair of parallel sides, and parallelogram has 2 pairs of parallel sides.
 - d. Trapezium has 2 pairs of parallel sides, and parallelogram has 1 pair of parallel sides.
- iv. Diagonals in isosceles trapezoid are _____.
 - a. parallel.
 - b. opposite.
 - c. vertical.
 - d. equal.

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (18)

 v. ABCD is a trapezium where AB || DC, BD is the diagonal and E is the midpoint of AD. A line is drawn through E parallel to AB intersecting BC at F. Which of these is true?

- d. None of these
- 2. Read the Source/ Text given below and answer any four questions:

Chocolate is in the form of a quadrilateral with sides 6cm and 10cm, 5cm and 5cm(as shown in the figure) is cut into two parts on one of its diagonal by a lady. Part-I is given to her maid and part II is equally divided among a driver and gardener.

- i. Length of BD:
 - a. 9cm
 - b. 8cm
 - c. 7cm
 - d. 6cm
- ii. Area of $\triangle ABC$:
 - a. 24cm²
 - b. 12cm²
 - c. 42cm²
 - d. 21cm²
- iii. The sum of all the angles of a quadrilateral is equal to:
 - a. 180°
 - b. 270°
 - c. 360°
 - d. 90°
- iv. A diagonal of a parallelogram divides it into two congruent:

uture's Key

- a. Square.
- b. Parallelogram.
- c. Triangles.
- d. Rectangle.
- v. Each angle of the rectangle is:
 - a. More than 90°
 - b. Less than 90°
 - c. Equal to 90°

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (20)

Answer Key:

MCQ:

- 1. (b) 50°
- 2. (c) 68°
- 3. (c) Trapezium
- 4. (c) Rectangle
- 5. (b) Kite
- 6. (a) 115°, 79°, 118°, 48°

d. Equal to 45°

- 7. (d) 10cm
- 8. (a) 175°
- 9. (d) 38°
- 10.(a) ∠A = ∠B

Very Short Answer:

1. Let the two adjacent angles be x and 2x.

In a parallelogram, sum of the adjacent angles are 180°

```
\therefore x + 2x = 180^{\circ}
```

 \Rightarrow 3x = 180°

 \Rightarrow x = 60°

Thus, the two adjacent angles are 120° and 60°. Hence, the angles of the parallelogram are 120°, 60°, 120° and 60°.

- 2. Rhombus.
- 3. Let each equal angle of given quadrilateral be x.

```
We know that sum of all interior angles of a quadrilateral is 360°
```

 $x + x + x + 144^{\circ} = 360^{\circ}$

 $3x = 360^{\circ} - 144^{\circ}$

3x = 216°

```
x = 72°
```

Hence, each equal angle of the quadrilateral is of 720 measures.

4. $\angle A - \angle C = 0^{\circ}$ (opposite angles of parallelogram are equal)

5.

Here, PQ = SR = 12 cm Let PS = x and PS = QR ∴ x + 12 + x + 12 = Perimeter

12 cm

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (21)

2x + 24 = 40 2x = 16 x= 8

Hence, length of each side of the parallelogram is 12cm, 8 cm, 12cm and 8cm.

6. We know that consecutive interior angles of a parallelogram are supplementary.

$$\therefore (x + 60^{\circ} + (2x + 30)^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 3x° + 90° = 180°

$$\Rightarrow 3x^{\circ} = 90^{\circ}$$

$$\Rightarrow x^{\circ} = 30^{\circ}$$

Thus, two consecutive angles are $(30 + 60)^\circ$, $12 \times 30 + 30)^{\prime\prime}$. i.e., 90° and 90° .

Hence, the special name of the given parallelogram is rectangle.

7. Since ONKA is a square

∴ ∠AON = 90°

We know that diagonal of a square bisects its $\angle s$

$$\Rightarrow \angle AOK = \angle KON = 45^{\circ}$$

Hence, ∠KOA = 45°

Now, $\angle A + \angle B + \angle C = 180^{\circ}$

 $\Rightarrow \angle A + 70^{\circ} + 70^{\circ} = 180^{\circ}$

$$\Rightarrow \angle A = 180^\circ - 70^\circ - 70^\circ = 40^\circ$$

8. Let $\angle Q = 2x$, $\angle R = 3x$ and $\angle S = 7x$ Now, $\angle P + \angle Q + \angle R + \angle S = 360^{\circ}$ $\Rightarrow 60^{\circ} + 2x + 3x + 7x = 360^{\circ}$ $\Rightarrow 12x = 300^{\circ}$ $X = \frac{300^{\circ}}{12} = 25^{\circ}$ $\angle S = 7x = 7 \times 25^{\circ} = 175^{\circ}$

Short Answer:

Ans: 1.

Here, $\angle C$ and $\angle D$ are adjacent angles of the parallelogram.

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (22)

 $\therefore \angle C + \angle D = 180^{\circ}$

 $\Rightarrow x + 75^{\circ} = 180^{\circ}$ $\Rightarrow x = 105^{\circ}$

Also, $y = x = 105^{\circ}$ [alt. int. angles]

Thus, x + y = 105° + 105° = 210°

Given: A parallelogram ABCD, in which AC = BD.

To Prove: \triangle BCD is a rectangle.

Proof: In $\triangle ABC$ and $\triangle BAD$

AB = AB (common]

AC = BD (given]

BC = AD (opp. sides of a ||gm]

 $\Rightarrow \Delta ABC \cong \Delta BAD$

[by SSS congruence axiom]

 $\Rightarrow \angle ABC = \angle BAD$ (c.p.c.t.)

Also, $\angle ABC + \angle BAD = 180^{\circ}$ (co-interior angles)

 $\angle ABC + \angle ABC = 180^{\circ} [\because \angle ABC = \angle BAD]$

2∠ABC = 180°

 $\angle ABC = 1/2 \times 180^{\circ} = 90^{\circ}$

Hence, parallelogram ABCD is a rectangle.

Ans: 3. Since diagonals of a rhombus bisect each other at right angle.

In $\therefore \triangle AOB$, we have $\angle OAB + \angle x + 90^\circ = 180^\circ$ $\angle x = 180^\circ - 90^\circ - 35^\circ$ $= 55^\circ$ Also, $\angle DAO = \angle BAO = 35^\circ$ $\angle y + \angle DAO + \angle BAO + \angle x = 180^\circ$

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (23)

catio

$$\Rightarrow \angle y + 35^\circ + 35^\circ + 55^\circ = 180^\circ$$

Hence, the values of x and y are $x = 55^{\circ}$, $y = 55^{\circ}$

Ans: 4.

Given: In ||gm ABCD, AP and CQ are perpendiculars from the

vertices A and C on the diagonal BD.

To Prove: (i) $\triangle APB \cong \triangle CQD$

(ii) AP = CQ

Proof: (i) In \triangle APB and \triangle CQD

AB = DC (opp. sides of a ||gm ABCD]

$$\angle APB = \angle DQC (each = 90^{\circ})$$

 $\angle ABP = \angle CDQ$ (alt. int. $\angle s$]

 $\Rightarrow \Delta APB \cong \Delta CQD$ [by AAS congruence axiom]

(ii) \Rightarrow AP = CQ [c.p.c.t.]

Ans: 5. Given: A quadrilateral ABCD whose diagonals AC and BD are perpendicular to each other at O. P, Q, R and S are mid-points of side AB, BC, CD and DA respectively are joined are formed quadrilateral PQRS.

To Prove: PQRS is a rectangle.

Proof: In ΔABC, P and Q are mid-points of AB and BC respectively.

 \therefore PQ || AC and PQ = $\frac{1}{2}$ AC ... (i) (mid-point theorem]

Further, in SACD, R and S are mid-points of CD and DA respectively.

SR || AC and SR = $\frac{1}{2}$ AC ... (ii) (mid-point theorem]

From (i) and (ii), we have PQ || SR and PQ = SR

Thus, one pair of opposite sides of quadrilateral PQRS are parallel and equal.

∴ PQRS is a parallelogram.

Since PQ|| AC PM || NO

In $\triangle ABD$, P and S are mid-points of AB and AD respectively.

PS || BD (mid-point theorem]

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (24)

- \Rightarrow PN || MO
- : Opposite sides of quadrilateral PMON are parallel.
- ∴ PMON is a parallelogram.

$$\angle$$
 MPN = \angle MON (opposite angles of ||gm are equal]

But \angle MON = 90° [given]

 $\therefore \angle MPN = 90^{\circ} \Rightarrow \angle QPS = 90^{\circ}$

Thus, PQRS is a parallelogram whose one angle is 90°

 \therefore PQRS is a rectangle.

Ans: 6. Since line segment joining the mid-points of two sides of a triangle is half of the third side.

Therefore, D and E are mid-points of BC and AC respectively.

 \Rightarrow DE = $\frac{1}{2}$ AB ...(i)

E and F are the mid-points of AC and AB respectively.

$$\therefore EF = \frac{1}{2}BC \dots$$
 (ii)

F and D are the mid-points of AB and BC respectively.

$$\therefore$$
 FD = $\frac{1}{2}$ AC ... (iii)

Now, SABC is an equilateral triangle.

$$\Rightarrow$$
 AB = BC = CA

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC = \frac{1}{2}CA$$

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC = \frac{1}{2}CA$$

$$\Rightarrow DE = EF = FD (using (i), (ii) and (iii)]$$

Hence, DEF is an equilateral triangle

Long Answer:

Ans: 1. Here, in \triangle ABC, R and Q are the mid-points of AB and AC respectively.

∴ By using mid-point theorem, we have

RQ || BC and RQ =
$$\frac{1}{2}$$
 BC

 \therefore RQ = BP = PC [\because P is the mid-point of BC]

 \therefore RQ || BP and RQ || PC

In quadrilateral BPQR

RQ || BP, RQ = BP (proved above]

- ∴ BPQR is a parallelogram. [∵ one pair of opp. sides is parallel as well as equal]
- : X is the mid-point of PR. [: diagonals of a ||gm bisect each other]

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (25)

RQ || PC and RQ = PC [proved above)

- ∴ PCQR is a parallelogram [∵ one pair of opp. sides is parallel as well as equal]
- ∴ Y is the mid-point of PQ [∵ diagonals of a ||gm bisect each other]
- In ΔPQR
- ∴ X and Y are mid-points of PR and PQ respectively.

```
\therefore XY \parallel RQ \text{ and } XY = \frac{1}{2}RQ \qquad \text{[by using mid-point theorem]}XY = \frac{1}{2} (\frac{1}{2}BC) \qquad [\because RQ = \frac{1}{2}BC]\Rightarrow \qquad XY = \frac{1}{4}BCAns: 2. Since AE = DE
```

 $\angle D = \angle A \dots$ (i) [:: $\angle s$ opp. to equal sides of a \triangle]

Again, BC || AD

 \angle EBC = \angle A (ii) (corresponding \angle s]

From (i) and (ii), we have

∠D = ∠EBC (iii)

But \angle EBC + \angle ABC = 180° (a linear pair)

 $\angle D + \angle ABC = 180^{\circ} (using (iii))$

- Now, a pair of opposite angles of quadrilateral ABCD is supplementary
- Thus, ABCD is a cyclic quadrilateral i.e., A, B, C and D'are concyclic. In ΔABD and ΔDCA

catio

 $\angle ABD = \angle ACD [\angle s \text{ in the same segment for cyclic quad. ABCD}]$

 $\angle BAD = \angle CDA [using (i)]$

AD = AD (common]

So, by using AAS congruence axiom, we have

 $\Delta ABD \cong \Delta DCA$

Hence, BD = CA [c.p.c.t.]

Ans: 3. Here, in \triangle ABC, AB = 8cm, BC = 9cm, AC = 10cm.

In $\triangle AOB$, X and Y are the mid-points of AO and BO.

 \therefore By using mid-point theorem, we have

$$XY = \frac{1}{2} AB = \frac{1}{2} \times 8cm = 4cm$$

Similarly, in $\Delta \tau BOC$, Y and Z are the mid-points of BO and CO.

 \therefore By using mid-point theorem, we have

$$YZ = \frac{1}{2}BC = \frac{1}{2} \times 9cm = 4.5cm$$

And, in $\Delta \tau COA$, Z and X are the mid-points of CO and AO.

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com (26)

Now, in quadrilateral PCQR

 \therefore ZX = $\frac{1}{2}$ AC = $\frac{1}{2}$ x 10cm = 5cm

Hence, the lengths of the sides of ΔXYZ are XY = 4cm, YZ = 4.5 cm and ZX = 5cm. Ans: 4. Since PQRS is a square. \therefore PQ = QR ... (I) [: sides of a square are equal] Also, $BQ = CR \dots$ (ii) [given] Subtracting (ii) from (i), we obtain PQ - BQ = QR - CR \Rightarrow PB = QC ... (iii) In $\Delta \tau$ APB and $\Delta \tau$ BQC AP = BQ[given $\angle APB = \angle BQC = 90^\circ$](each angle of a square is 90°) PB = QC (using (iii))So, by using SAS congruence axiom, we have $\Delta APB \cong \Delta BQC$ \therefore AB = BC [c.p.c.t.] Now, in ∆ABC AB = BC [proved above] $\therefore \angle ACB = \angle BAC = x^{\circ}$ (say) [$\angle s$ opp. to equal sides] Also, $\angle B + \angle ACB + \angle BAC = 180^{\circ}$ \Rightarrow 90° + x + x = 180° $\Rightarrow 2x^{\circ} = 90^{\circ}$ x° = 45° Hence, $\angle BAC = 45^{\circ}$ Juture's Key Ans: 5. J Since DP and CP are angle bisectors of $\angle D$ and $\angle C$ respectively. $: \angle 1 = \angle 2$ and $\angle 3 = \angle 4$ Now, AB || DC and CP is a transversal $\therefore \angle 5 = \angle 1$ [alt. int. $\angle s$] But $\angle 1 = \angle 2$ [given] $\therefore \angle 5 = \angle 2$ Now, in ABCP, $\angle 5 = \angle 2$ \Rightarrow BC = BP ... (I) [sides opp. to equal \angle s of a A] Again, AB || DC and DP is a transversal. $\therefore \angle 6 = \angle 3$ (alt. int. Δs] But $\angle 4 = \angle 3$ [given] $\therefore \angle 6 = \angle 4$ Now, in $\triangle ADP$, $\angle 6 = \angle 4$

⇒ DA = AP (ii) (sides opp. to equal ∠s of a A]
Also, BC = DA... (iii) (opp. sides of parallelogram)
From (i), (ii) and (iii), we have
BP = AP
Hence, P is the mid-point of side AB.

Assertion and Reason Answers-

1. a) Assertion and reason both are correct statements and reason is correct explanation for assertion.

2. c) Assertion is correct statement but reason is wrong statement.

Case Study Answers-

1.

(i)	(b)	30cm
(ii)	(c)	135, 135
(iii)	(c)	Trapezium has 1 pair of parallel sides, and parallelogram has 2 pairs of parallel sides.
(iv)	(d)	equal.
(v)	(a)	BF = FC

2.

	(i)	(b)	8cm		
	(ii)	(a)	24cm ²		
	(iii)	(c)	360°		
	(iv)	(c) <i>j</i>	Triangles.		
	(v)	(c)	Equal to 90°		
F	uk	ey	Educ	atio	on