

MATHEMATICS

Chapter 8: Application of Integrals

APPLICATION OF INTEGRALS

- 1. Elementary area: The area is called elementary area which is located at any arbitary position within the region which is specified by some value of x between a and b.
- 2. The area of the region bounded by the curve $y = f(x)$, x-axis and the lines $x = a$ and $x = b$ (b > $Z^{\nu \alpha \lambda} = \int_{Z} f(\lambda) d\lambda$ **E INTEGRALS**

Here $y = f(x)$, x-axis and the lines $x = a$ and $x = b$ (b >
 $= \int_{z}^{b} f(x) dx$

we $x = \theta(y)$, y-axis and the lines $y = c$, $y = d$ is
 $\begin{cases} \frac{b}{c} \theta(y) dy \end{cases}$
- **PELICATION OF INTEGRALS**
 APPLICATION OF INTEGRALS
 Elementary area: The area is called elementary area which is located at any arbitary

position within the region which is specified by some value of x between a and **APPLICATION OF INTEGRALS**
 APPLICATION OF INTEGRALS
 APPLICATION OF INTEGRALS
 1. Elementary area: The area is called elementary area which is located at any arbitary

position within the region which is specified $c^{aug} = J_c^{aug}$
- **PELICATION OF INTEGRALS**
 APPLICATION OF INTEGRALS
 Elementary area: The area is called elementary area which is located at any arbitary

position within the region which is specified by some value of x between a and **Surface 3**
 N OF INTEGRALS

Prementary area which is located at any arbitary

cified by some value of x between a and b.
 $vdx = \int_{z}^{b} f(x) dx$

curve $x = \theta(y)$, y-axis and the lines $x = a$ and $x = b$ (b >
 $vdx = \int_{c}^{b} \theta(y) dy$ 4. The area of the region enclosed between two curves $y = f(x)$, $y = g(x)$ and the lines $x = a$, $x =$ **Elementary area:** The area is called elementary area which is located at any arbitary
position within the region which is specified by some value of x between a and b.
The area of the region bounded by the curve $y = f(x)$, b is given by the formula, Area $=\int_a^b [f(x)-g(x)]dx$, where $f(x) \ge g(x)$ in [a, b]. **RALS**

which is located at any arbitary

value of x between a and b.

x-axis and the lines x = a and x = b (b >

dx

(), y-axis and the lines y = c, y = d is

y = f (x), y = g (x) and the lines x = a, x =

, where $f(x) \ge$ **Example 1.1 In the Article Conduct Article State Article State Article State Article State Article Article State Article Art** ea: The area is called elementary area which is located at any arbitary

the region which is specified by some value of x between a and b.

eregion bounded by the curve $y = f(x)$, x-axis and the lines $x = a$ and $x = b$ (b >
 ea is called elementary area which is located at any arbitary

on which is specified by some value of x between a and b.

ounded by the curve $y = f(x)$, x-axis and the lines $x = a$ and $x = b$ (b >

a: $Area = \int_{2}^{b} v dx = \int_{2}^{b} f(x$
-

$$
Area = \int_{a}^{b} [f(x) - g(x)]dx + \int_{c}^{b} [g(x) - f(x)]dx
$$

```
Future's Key
```
Fukey Education

APPLICATION OF INTEGRALS

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com

(2)

Important Questions

Multiple Choice questions-

1. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines $x =$ 0 and $x = 2$ is

(a) π

- ଷ
- $(c) \frac{\pi}{3}$
(d) $\frac{\pi}{2}$ (d) $\frac{\pi}{4}$ ସ

2. Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is

- (a) 2
- (b) $\frac{9}{4}$ ସ
- $(c) \frac{9}{2}$ state the contract of the cont
- $(d) \frac{9}{2}$ $2 \left(\frac{1}{2} \right)$
- 3. Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line $x + y = 2$ is

Juture's Key

Education

- (a) 2 (π 2)
- (b) $π 2$
- (c) 2π 1
- (d) 2 (π + 2).
- 4. Area lying between the curves $y^2 = 4x$ and $y = 2$ is:

$$
(a) \frac{2}{3}
$$
\n
$$
(b) \frac{1}{3}
$$

- $(c) \frac{1}{4}$ ସ
- $(d) \frac{3}{4}$ ସ

5. Area bounded by the curve $y = x^3$, the x-axis and the ordinates $x = -2$ and $x = 1$ is

$$
(a) -9
$$

$$
(b) -\frac{15}{4}
$$

$$
\begin{array}{c}\n\text{c} \\
\text{c} \\
\text{d}\n\end{array}
$$

 $(d) \frac{17}{4}$ ସ

6. The area bounded by the curve $y = x|x|$, x-axis and the ordinates $x = -1$ and $x = 1$ is given by

- (a) 0
- $(b) \frac{1}{3}$ ଷ
- $(c) \frac{2}{3}$ state the contract of the cont
- $(d) \frac{4}{2}$ state the contract of the cont

7. The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is

- (a) $\frac{4}{3}$ (4π $\sqrt{3}$) (b) $\frac{1}{3}(4\pi + \sqrt{3})$ (c) $\frac{2}{3}$ (8π – $\sqrt{3}$) cation (d) $\frac{4}{3}(8π + \sqrt{3})$ 8. The area enclosed by the circle $x^2 + y^2 = 2$ is equal to (a) 4π sq. units (b) 2√2 π sq. units (c) $4\pi^2$ sq. units (d) 2π sq. units. 9. The area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to $\frac{y}{b^2}$ = 1 is equal to
- (a) $π²ab$

(4)

(5)

- (b) πab
- (c) πa²b
- (d) π ab².
- 10. The area of the region bounded by the curve $y = x^2$ and the line $y = 16$ is
- (a) $\frac{32}{3}$ ଷ
- (b) $\frac{256}{3}$
- ଷ $(c) \frac{64}{2}$
- ଷ
- $(d) \frac{128}{3}$ a and the contract of the cont

Very Short Questions:

- 1. Find the area of region bounded by the curve $y = x^2$ and the line $y = 4$.
- 2. Find the area bounded by the curve $y = x^3$, $x = 0$ and the ordinates $x = -2$ and $x = 1$.
- 3. Find the area bounded between parabolas $y^2 = 4x$ and $x^2 = 4y$.
- 4. Find the area enclosed between the curve y = $\cos x$, $0 \le x \le \frac{\pi}{4}$ and the co-ordinate axes.
- 5. Find the area between the x-axis curve $y = cos x$ when $0 \le x < 2$.
- 6. Find the ratio of the areas between the center $y = cos x$ and $y = cos 2x$ and x-axis for $x = 0$ to cati
	- $X = \frac{h}{a}$ π a de la propincia de la construction de la construction de la construction de la construction de la construction
De la construction de la construc

7. Find the areas of the region:

 $\{(x,y): x^2 + y^2 \leq 1 \leq x + 4\}$

Long Questions:

1. Find the area enclosed by the circle:

 $x^2 + y^2 = a^2$. (N.C.E.R.T.)

2. Using integration, find the area of the region in the first quadrant enclosed by the xaxis, the line $y = x$ and the circle $x^2 + y^2 = 32$. (C.B.S.E. 2018)

APPLICATION OF INTEGRALS

- 3. Find the area bounded by the curves $y = \sqrt{x}$, $2y + 3 = Y$ and Y-axis. (C.B.S.E. Sample Paper 2018-19)
- 4. Find the area of region:

 $\{(x,y): x^2 + y^2 < 8, x^2 < 2y\}$. (C.B.S.E. Sample Paper 2018-19)

Case Study Questions:

1. Ajay cut two circular pieces of cardboard and placed one upon other as shown in figure. One of the circle represents the equation $(x - 1)^2 + y^2 = 1$, while other circle represents the equation $x^2 + y^2 = 1$.

Based on the above information, answer the following questions.

i. Both the circular pieces of cardboard meet each other at

a.
$$
x = 1
$$

\nb. $x = \frac{1}{2}$
\nc. $x = \frac{1}{3}$
\nd. $x = \frac{1}{4}$

ii. Graph of given two curves can be drawn as.

a.

Website - www.fukeyeducation.com, Email :- fukeyeducation@gmail.com

ation:

APPLICATION OF INTEGRALS

b.

c.

d. None of these

iii. Value of $\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^2} dx$ is. a. $\frac{\pi}{6} - \frac{\sqrt{3}}{8}$ b. $\frac{\pi}{6} + \frac{\sqrt{3}}{8}$ c. $\frac{\pi}{2} + \frac{\sqrt{3}}{4}$ d. $\frac{\pi}{2} - \frac{\sqrt{3}}{4}$ iv. Value of $\int\limits_1^1 \sqrt{1-x^2} dx$ is. a. $\frac{\pi}{6} + \frac{\sqrt{3}}{4}$ b. $\frac{\pi}{6} + \frac{\sqrt{3}}{8}$ c. $\frac{\pi}{6} - \frac{\sqrt{3}}{8}$ d. $\frac{\pi}{2} - \frac{\sqrt{3}}{4}$ Future's Key

v. Area of hidden portion of lower circle is. Education

a.
$$
\left(\frac{2\pi}{3} + \frac{\sqrt{3}}{2}\right)
$$
 sq. units
b. $\left(\frac{\pi}{3} - \frac{\sqrt{3}}{8}\right)$ sq. units
c. $\left(\frac{\pi}{3} + \frac{\sqrt{3}}{8}\right)$ sq. units
d. $\left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right)$ sq. units

2. Location of three houses of a society is represented by the points A(-1, 0), B(1, 3) and $C(3, 2)$ as shown in figure.

Based on the above information, answer the following questions

(i) Equation of line AB is.

a.
$$
y = \frac{3}{2}(x + 1)
$$

\nb. $y = \frac{3}{2}(x - 1)$
\nc. $y = \frac{1}{2}(x + 1)$ *Inturly's Key*
\nd. $y = \frac{1}{2}(x - 1)$
\n(ii) Equation of line BC is.
\na. $y = \frac{1}{2}x - \frac{7}{2}$
\nb. $y = \frac{3}{2}x - \frac{7}{2}$
\nc. $y = \frac{-1}{2}x + \frac{7}{2}$
\nd. $y = \frac{3}{2}x + \frac{7}{2}$

(iii)Area of region ABCD is.

- a. 2 sq. units
- b. 4 sq. units
- c. 6 sq. units
- d. 8 sq. units

(iv) Area of $\triangle ADC$ is,

- a. 4 sq. units
- b. 8 sq. units
- c. 16 sq. units
- d. 32 sq. units
- (v) Area of \triangle ABC is.
	- a. 3 sq. units
	- b. 4 sq. units
	- c. 5 sq. units
	- d. 6 sq. units

Answer Key-

Multiple Choice questions-

- 1. Answer: (a) $π$
- 2. Answer: (a) 2
- 3. Answer: (b) π -2 *Future's Key*
- 4. Answer: (b) $\frac{1}{3}$
- 5. Answer: (b) $-\frac{15}{4}$
- 6. Answer: $(c) \frac{2}{3}$ $\overline{\mathbf{3}}$
- 7. Answer: (c) $\frac{2}{3}(8\pi \sqrt{3})$
- 8. Answer: (d) 2π sq. units.
- 9. Answer: (b) πab
- 10. Answer: (b) $\frac{256}{3}$ ଷ

Very Short Answer:

ଷ **Education**

- 1. Solution: $\frac{32}{2}$ sq. units.
- 2. Solution: $\frac{17}{4}$ sq. units.
- 3. Solution: $\frac{16}{3}$ sq. units.
- 4. Solution: $\frac{1}{2}$ sq. units.
- 5. Solution: 4 sq. units
- 6. Solution: 2 : 1.
- 7. Solution: $\frac{1}{2}(\pi 1)$ sq. units.

Long Answer:

1. Solution:

The given circle is

$$
x^2 + y^2 = a^2 \dots (1)
$$

This is a circle whose center is (0,0) and radius 'a'.

Area of the circle=4 x (area of the region OABO, bounded by the curve, x-axis and ordinates $x = 0$, $x = a$

[∵ Circle is symmetrical about both the axes]

=
$$
4 \int_0^a y dx
$$
 [Taking vertical strips] o
\n= $4 \int_0^a \sqrt{a^2 - x^2} dx$
\n[: (1) $\Rightarrow y = \pm \sqrt{a^2 - x^2}$

(11)

But region OABO lies in 1st quadrant, \therefore y is + ve]

$$
= 4\left[\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a}\right]_0^a
$$

= $4\left[\left{\frac{a}{2}(0) + \frac{a^2}{2}\sin^{-1}(1)\right} - \{0 + 0\}\right]$
= $4\left(\frac{a^2}{2} \cdot \frac{\pi}{2}\right) = \pi a^2$ sq. units.

2. Solution:

We have:

$$
y = x \dots (l)
$$

and $x^2 + y^2 = 32$...(2)

(1) is a st. line, passing through $(0,0)$ and (2) is a circle with centre $(0,0)$ and radius $4\sqrt{2}$ units. Solving (1) and (2):

Putting the value of y from (1) in (2) , we get:

$$
x^2 + x^2 = 32
$$

 $2x^2 = 32$

 $x^2 = 16$

```
x = 4.
```

```
[∵ region lies in first quadrant]
```
Also, $v = 4$

Thus, the line (1) and the circle (2) meet each other at B (4,4), in the first quadrant.

Future's Key

catio

Draw BM perp. to $x - axis$.

∴ Reqd. area = area of the region OMBO + area of the region BMAB ...(3)

Now, area of the region OMBO

$$
= \int_{0}^{4} y \, dx \qquad \text{[Taking vertical strips]}
$$
\n
$$
= \int_{0}^{4} x \, dx = \left[\frac{x^2}{2} \right]_{0}^{4} = \frac{1}{2} (16 - 0) = 8.
$$

Again, area of the region BMAB

$$
= \int_{4}^{4\sqrt{2}} y \, dx
$$
 [Taking vertical strips]
\n
$$
= \int_{4}^{4\sqrt{2}} \sqrt{32 - x^2} \, dx
$$

\n[$\because y^2 = 32 - x^2 \Rightarrow y = \sqrt{32 - x^2}$, taking +ve
\nsign, as it lies in 1st quadrant]
\n
$$
= \int_{4}^{4\sqrt{2}} \sqrt{(4\sqrt{2})^2 - x^2} \, dx
$$

\n
$$
= \left[\frac{x\sqrt{32 - x^2}}{2} + \frac{32}{2} \sin^{-1} \frac{x}{4\sqrt{2}} \right]_{4}^{4\sqrt{2}}
$$

\n
$$
= \left\{ \frac{1}{2} 4\sqrt{2} \times 0 + \frac{32}{2} \sin^{-1} (1) \right\}
$$

\n
$$
- \left\{ \frac{4}{2} \sqrt{32 - 16} + \frac{32}{2} \sin^{-1} \frac{1}{\sqrt{2}} \right\}
$$

\n= 0 + 16 $\left(\frac{\pi}{2} \right) - \left(2 \times 4 + 16 \times \frac{\pi}{4} \right)$

$$
= 8\pi - (8 + 4\pi) = 4\pi - 8
$$

∴ From (3),

Required area = $8 + (4\pi - 8) = 4\pi$ sq. units.

3. Solution:

The given curves are

y = √x ………….(1)

and $2y + 3 = x$...(2)

Solving (1) and (2), we get;

$$
\sqrt{2y+3} = y
$$

Squaring, $2y + 3 = y2$

 $\Rightarrow y^22 - 2y - 3 = 0$

$$
\Rightarrow (y+1)(y-3) = 0 \Rightarrow y = -1, 3
$$

- \Rightarrow y = 3 [\because y > 0]
- Putting in (2),

$$
x = 2(3) + 3 = 9.
$$

Thus, (1) and (2) intersects at $(9, 3)$. We set the \sim

Fukey Education

$$
\therefore \text{ Read. Area} = \int_0^3 (2y+3) dy - \int_0^3 y^2 dy
$$

= $[y^2 + 3y]_0^3 - \left[\frac{y^3}{3}\right]_0^3$
= $(9+9) - \left(\frac{27}{3}\right)$
= $9+9-9 = 9$ sq. units.

4. Solution:

The given curves are;

$$
x^2 + y^2 = 8 \dots (1)
$$

 $x^2 = 2y$ (2) Juture's Key

Solving (1) and (2):

 $8 - y^2 = 2y$

$$
\Rightarrow y^2 + 2y - 8 = 0
$$

\n
$$
\Rightarrow (y + 4) (y - 2) = 0
$$

\n
$$
= y = -4,2
$$

\n
$$
\Rightarrow y = 2. [\because y > 0]
$$

\nPutting in (2), $x^2 = 4$
\n
$$
\Rightarrow x = -2 \text{ or } 2.
$$

\nThus, (1) and (2) intersect at P(2, 2) and Q(-2, 2).
\n
$$
\therefore \text{ Required area} = \int_{-2}^{2} \sqrt{8-x^2} dx - \int_{-2}^{2} \frac{x^2}{2} dx
$$

\n
$$
= 2 \left[\int_{0}^{2} \sqrt{(2\sqrt{2})^2 - x^2} dx - \int_{0}^{2} \frac{x^2}{2} dx \right]
$$

\n
$$
= 2 \left[\frac{x\sqrt{8-x^2}}{2} + \frac{8}{2} \sin^{-1}(\frac{x}{2\sqrt{2}}) \right]_{0}^{2} - \frac{1}{3} [x^3]_{0}^{2}
$$

\n
$$
= 2 \left[2 + 4 \sin^{-1}(\frac{1}{\sqrt{2}}) - 0 \right] - \frac{1}{3} [8 - 0]
$$

\n
$$
= 4 + 8(\frac{\pi}{4}) - \frac{8}{3} = (2\pi + \frac{4}{3}) \text{ sq. units}
$$

Case Study Answers:

1. Answer : Key Education

i. (b)
$$
x = \frac{1}{2}
$$

Solution:

We have, $(x - 1)^2 + y^2 = 1$ \Rightarrow y = $\sqrt{1-(x-1)^2}$ Also $x^2 + y^2 = 1$ $\Rightarrow y = \sqrt{1-x^2}$ From (i) and (ii), we get $\sqrt{1-(x-1)^2} = \sqrt{1-x^2}$ $\Rightarrow (x-1)^2 = x^2$ \Rightarrow 2x = 1 \Rightarrow x = $\frac{1}{2}$ $ii. (c)$ $x=\frac{1}{2}$ 4 x^2 ıcation $(1, 0)$ \bigcirc ν'

iii. (a)
$$
\frac{\pi}{6} - \frac{\sqrt{3}}{8}
$$

Solution:

$$
\begin{aligned}\n&\left[\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^2} + \frac{1}{2}\sin^{-1}\left(\frac{x-1}{1}\right)\right] \\
&= \frac{1}{2}\left(\frac{1}{2}-1\right)\sqrt{1-\frac{1}{4}} + \frac{1}{2} + \sin^{-1}\left(-\frac{1}{2}\right) - \left(-\frac{1}{2}\right) \\
&- \frac{1}{2}\sin^{-1} \\
&= \left[\frac{-1}{4}\cdot\frac{\sqrt{3}}{2} - \frac{1}{2}\cdot\frac{\pi}{6} + 0 + \frac{1}{2}\cdot\frac{\pi}{2}\right] = \frac{\sqrt{3}}{8} - \frac{\pi}{12} + \frac{\pi}{4} \\
&= \frac{\pi}{6} - \frac{\sqrt{3}}{8} \\
&\text{iv. (c) } \frac{\pi}{6} - \frac{\sqrt{3}}{8} \\
&\frac{1}{2}\sqrt{1-x^2}\,dx = \left[\frac{x}{2}\sqrt{1-x^2} + \frac{1}{2}\sin^{-1}x\right]_{\frac{1}{2}}^{1} \\
&= 0 + \frac{1}{2}\sin^{-1}(1) - \frac{1}{4}\sqrt{1-\frac{1}{4}} + \frac{1}{2}\sin^{-1}\left(\frac{1}{2}\right) \frac{1}{4} \\
&= \frac{\pi}{4} - \frac{\sqrt{3}}{8} - \frac{\pi}{12} = \frac{\pi}{6} - \frac{\sqrt{3}}{8}\n\end{aligned}
$$

v. (d)
$$
\left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right)
$$
 sq.units

Solution:

$$
=2\bigg[\int\limits_0^{\frac{1}{2}} \sqrt{1-(x-1)^2} dx + \int\limits_{\frac{1}{2}}^1 \sqrt{1-x^2} dx \bigg]
$$

$$
=2\left[\frac{\pi}{6}-\frac{\sqrt{3}}{8}+\frac{\pi}{6}-\frac{\sqrt{3}}{8}\right]
$$

=2\left[\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right]=\left(\frac{2\pi}{3}-\frac{\sqrt{3}}{2}\right) sq. units

2. Answer :

i. (a) $y = \frac{3}{2}(x+1)$

Solution:

Equation of line AB is.
$$
y - 0 = \frac{3-0}{1+1}(x+1) \Rightarrow y = \frac{3}{2}(x+1)
$$

ii. (c) $y = \frac{-1}{2}x + \frac{7}{2}$

Solution:

Equation of line BC is $y - 3 = \frac{2-3}{3-1}(x + 1)$
 $\Rightarrow y = -\frac{1}{2}x + \frac{1}{2} + 3 \Rightarrow y = \frac{-1}{2}x + \frac{7}{2}$

Future's Key

iii. (d) 8 sq. units

Solution:

Area of region ABCD = Area of $\triangle ABE +$ Area of region BCDE

$$
= \int_{-1}^{1} \frac{3}{2} (x + 1) dx + \int_{1}^{3} \left(\frac{-1}{2} x + \frac{7}{2} \right) dx
$$

\n
$$
= \frac{3}{2} \left[\frac{x^2}{2} + x \right]_{-1}^{1} + \left[\frac{-x^2}{4} + \frac{7}{2} x \right]_{1}^{3}
$$

\n
$$
\frac{3}{2} \left[\frac{1}{2} + 1 - \frac{1}{2} + 1 \right] + \left[\frac{-9}{4} + \frac{21}{2} + \frac{1}{4} - \frac{7}{2} \right]
$$

\n
$$
= 3 + 5 = 8 \text{ sq. units}
$$

\niv. (a) 4 sq. units
\nsolution:
\nEquation of line AC is $y - 0 = \frac{2-0}{3+1} (x + 1)$
\n
$$
\Rightarrow y = \frac{1}{2} (x + 1)
$$

\n
$$
\therefore \text{Area of } \triangle ADC = \int_{-1}^{3} \frac{1}{2} (x + 1) dx = \left[\frac{x^2}{4} + \frac{1}{2} x \right]_{-1}^{3}
$$

\n
$$
= \frac{9}{4} + \frac{3}{2} - \frac{1}{4} + \frac{1}{2} = 4 \text{ sq. units}
$$

\nv. (b) 4 sq. units

Solution:

V.

Area of $\triangle ABC$ = Area of region ABCD - Area of $\triangle ACD = 8 - 4 = 4$ sq.units